Search results for "Central binomial coefficient"

showing 2 items of 2 documents

Generalized Schröder permutations

2013

We give the generating function for the integer sequence enumerating a class of pattern avoiding permutations depending on two parameters: m and p. The avoided patterns are the permutations of length m with the largest element in the first position and the second largest in one of the last p positions. For particular instances of m and p we obtain pattern avoiding classes enumerated by Schroder, Catalan and central binomial coefficient numbers, and thus, the obtained two-parameter generating function gathers under one roof known generating functions and expresses new ones. This work generalizes some earlier results of Barcucci et al. (2000) [2], Kremer (2000) [5] and Kremer (2003) [6].

Discrete mathematicsClass (set theory)General Computer Science010102 general mathematicsGenerating functionInteger sequence0102 computer and information sciences[ MATH.MATH-CO ] Mathematics [math]/Combinatorics [math.CO]01 natural sciencesTheoretical Computer ScienceCombinatorics010201 computation theory & mathematicsPosition (vector)[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]Central binomial coefficient0101 mathematicsElement (category theory)ComputingMilieux_MISCELLANEOUSMathematics
researchProduct

Approximation Operators of Binomial Type

1999

Our objective is to present a unified theory of the approximation operators of binomial type by exploiting the main technique of the so- called “ umbral calculus” or “finite operator calculus” (see [18], [20]-[22]). Let us consider the basic sequence (bn)n≥0 associated to a certain delta operator Q. By supposing that b n (x) ≥ 0, x ∈ [0, ∞), our purpose is to put in evidence some approximation properties of the linear positive operators (L Q n ) n≥1 which are defined on C[0,1] by \( L_n^Qf = \sum\limits_{k = 0}^n {\beta _n^Q{,_k}f\left( {\frac{k}{n}} \right),\beta _{n{,_k}}^Q\left( x \right): = } \frac{1}{{{b_n}\left( n \right)}}\left( {\begin{array}{*{20}{c}} n \\ k \end{array}} \right){b_…

CombinatoricsPhysicssymbols.namesakeBinomial typeBinomial approximationsymbolsBinomial numberCentral binomial coefficientDelta operatorGaussian binomial coefficientBinomial seriesBinomial coefficient
researchProduct